

California Environmental Protection Agency AIR RESOURCES BOARD

California Renewable Electricity Standard

Public Workshop April 5, 2010 Noon to 3:00 P.M.

April 5, 2010 Page 1

Overview of Presentation

- Background
- Possible Compliance Scenarios Analysis
- Methodology for GHG and Air Quality (AQ) Analysis
- Preliminary Results of GHG and AQ Analysis
- Next Steps

April 5, 2010

Background - AB 32 Requirements

- Section 38562:
 - √ Be equitable
 - ✓ Ensure activities do not disproportionately impact low-income communities
 - ✓ Complement and do not interfere with air quality or toxic emission standards
 - √ Consider overall societal benefits

April 5, 2010

<u>Background – Additional Requirements</u>

- Section 38570:
 - ✓ Consider direct, indirect, localized and cumulative emission impacts
 - ✓ Design market-based compliance mechanism to prevent emissions increase
 - ✓ Maximize environmental and economic benefits.

Possible Compliance Scenarios Analysis

- Possible Compliance Scenarios
 - ✓ Mix of resources used to comply with 20% RPS
 - ✓ Mix of resources used to comply with 33% RES
- 20% RPS Scenario
 - ✓ RPS with 20% renewable resources in 2020
- 33% RES Scenario
 - √ 33% renewable resources in 2020 with RPS requirements
- RES Calculator developed by Energy and Environmental Economics, Inc. (E3) used to generate possible compliance scenarios

April 5, 2010 Page 5

Methodology

- Both possible compliance scenarios examine LOW Load and HIGH Load forecasts
- LOW Load Forecast
 - ✓ Includes AB 32 Scoping Plan measures
- HIGH Load Forecast
 - ✓ Excludes AB 32 Scoping Plan measures

April 5, 2010 Page 6

Methodology (cont)

- GHG emission factors are based on ARB's analysis entitled "Evaluation of Greenhouse Gas Benefits for Renewable Energy Technologies"
- GHG emission estimates include all areas within the Western Electricity Coordinating Council (WECC) that supply power to California
- Hydro power, wind, solar thermal, solar PV and landfill/digester gas are all assumed to have negligible GHG operating emissions

April 5, 2010 Page 7

Methodology (cont)

- Emission factors for criteria pollutants are based on historical emission data and environmental impact reports
- Criteria pollutant emission estimates include all emissions occurring in California

April 5, 2010

Electricity Retails Sales in 2008 & Projections for 2020

- 2008 Retail Sales = 262,000 GWh
- 2020 Retail Sales
 - √ Based on 2009 IEPR Projections
 - ✓ Low Load = 251,000 GWh
 - √ High Load = 289,000 GWh

April 5, 2010

Page 9

Preliminary Results - GHG Emissions from 20% RPS Scenario

WECC-Wide (MMTCO₂e/yr)

	20% RPS in 2020			
2008 Emissions	Low Load	High Load		
103	85	104		

April 5, 2010

Preliminary Results - GHG Emissions from 20% RPS Scenario vs. 33% RES Scenario

WECC-Wide (MMTCO₂e/yr, 2020)

		,	
Scenarios	Low Load	High Load	
20% RPS	85	104	
33% RES	65	81	
Emission Reduction	20	23	

April 5, 2010

Page 11

Preliminary Results – Comparison of 2008 vs. 20% RPS Scenario, Low Load

	Statewide (tons/yr)			
	NO _x	SO _x	СО	PM _{2.5}
2008	15,200	1,980	22,200	2,970
2020, 20% RPS	13,900	1,850	20,100	2,950

April 5, 2010

Preliminary results – Comparison of 20% RPS Scenario vs. 33% RES Scenario, Low Load

	Statewide (tons/yr, 2020)			
Scenarios	NOx	SOx	СО	PM2.5
20% RPS	13,900	1,850	20,100	2,950
33% RES	12,500	1,750	19,100	2,860
Emissions Reduction	1,400	100	1,000	90
Percent Reduction	10	5	5	3

April 5, 2010 Page 13

Preliminary Results – Comparison of 2008 vs. 20% RPS Scenario, High Load

	Statewide (tons/yr)			
	NO _x	SO _x	СО	PM _{2.5}
2008	15,200	1,980	22,200	2,970
2020, 20% RPS	15,600	2,190	22,600	3,400

April 5, 2010 Page 14

Preliminary results – Comparison of 20% RPS Scenario vs. 33% RES Scenario, High Load

	Statewide (tons/yr, 2020)			
Scenarios	NO _x	SO _x	СО	PM _{2.5}
20% RPS	15,600	2,190	22,600	3,400
33% RES	14,200	2,010	21,500	3,320
Emissions Reduction	1,400	180	1,100	80
Percent Reduction	9	8	5	2

April 5, 2010 Page 15

Next Steps

- Finalize preliminary results presented today
- Analyze other possible scenarios based on RES Calculator
- Evaluate toxic air contaminants and cumulative impacts
- Evaluate regional and community air quality impacts
- Work with consultant to analyze non-air impacts

April 5, 2010 Page 16

Questions / Comments

Email address: auditorium@calepa.ca.gov

April 5, 2010 Page 17

Points of Contact

Barbara Fry, Chief

Measures Assessment Branch

bfry@arb.ca.gov

(916)322-8267

Terrel Ferreira, Manager

GHG Measures Section

tferreir@arb.ca.gov

(916)445-3526

Win Setiawan, Lead

Staff Air Pollution Specialist

wsetiawa@arb.ca.gov

(916)324-0337

April 5, 2010